
CS 5381 Analysis of Algorithms
Rattikorn Hewett

Assignment 3

Assign date: Mar 1, 2012

Due: Mar 22(you have three weeks)

A priority queue for a simplified agenda manager

in a rule-based expert system shell

The two basic elements of a rule-based expert system shell are a knowledge base and an

inference engine. The knowledge base contains the domain knowledge in the form of rules. The

inference engine uses these rules to produce a solution to a given problem.

The inference engine operates in cycles. In each cycle, it first determines which rules can be

activated for firing (called activated rules), then selects one rule for execution and finally

executes the selected rule. Each activated rule has a corresponding priority. An agenda contains

a list of activated rules, with their priorities, maintained by an agenda manager. In each cycle, an

agenda manager updates list of activated rules by adding new activated rules and deleting rules

that are no longer activated and the rule that was executed in a previous cycle.

This assignment is to be done by a team of two. You are to implement a simplified agenda

manager. In each cycle, the agenda manager first deletes from the agenda the activated rule that

was executed in a previous cycle. A list of new activated rules is given to the agenda manager to

add to the agenda. Once a rule is added to the agenda, it remains there until it is executed. An

agenda manager then determines the rule with highest priority for the inference engine to execute

in this cycle. Only one rule can be executed in each cycle. A rule that has been executed and

removed from the agenda may be put on the agenda again in the next cycle. The system halts

when the agenda is empty or after it runs 30 cycles.

Your implementation must use a priority queue implemented by using a heap. For simplicity,

assume that the agenda can contain at most 300 rules (although a system may have more than

300 rules). Each rule is represented by a character string of length 5 and a priority of range

between 1 and 100.

The agenda manager takes a file named input.txt as input. Each line of the file is a list of

ordered pairs (x, y) where x is a rule and y is a priority. The agenda manager builds a priority

queue (heap) from the rules and priorities in the first line of the file. It then outputs the rule with

the highest priority and removes it from the queue. Each subsequent line of the input file is used

as the list of rules to be added in another cycle.

Example of input file:

(arule, 12), (brule, 21), (zrule, 70), (drule, 25), (erule, 10)

(frule, 3)

(grule, 20), (srule, 100)

The actions of the agenda manager for this file are:

Cycle 1: Build a priority queue (heap) containing the 5 rules with corresponding priorities as in

line 1. Output zrule and remove it from the queue.

Cycle 2: Add frule with priority 3 to queue. Output drule and remove it from the queue.

Cycle 3: Add grule and srule with respective priorities 20 and 100 to the queue. Output srule

and remove it from the queue.

Cycles 4-8: Output and remove from the queue rules brule, grule, arule, erule, and frule.

Your agenda manager must include the following operations:

BuildQueue: builds a priority queue (heap) from an unsorted array of rules with priorities

Heapify: used by BuildQueue to maintain the heap properly

ExtractMax: returns the rule with the highest priority

Insert: adds a new rule to the queue

Delete: removes a rule from the queue

What to submit:

Part 1: Results obtained from the runs against each of the given tests. The results should show

content of the agenda in each reasoning cycle and clearly state which cycle the inference

terminates.

Part 2: Intelligent and concise documentation.

Part 3: (bonus 10%) Experiment to see the run time performance of your simplified agenda

manager for different problem sizes. Show the graph of the above result and relate it to

the asymptotic behavior of the worst case run time.

Grading:

Your program will be evaluated based on results of the program execution when tested with

given input files. The testing files will be available on my website. If your program terminates

normally with correct outputs for all tests, your code and documentation will be examined and

scored. Otherwise, your code and documentation will not be graded and you may improve your

score by making correction and resubmitting your work one more time within a week after the

assignment is returned.

Caution: Make sure that your program is self-aware with graceful degradation (i.e., give

rationales upon exit) when inputs do not fit the specification.

